LANGLEY RESEARCH CENTER

FACILITY LOCATION

Hampton, Virginia 23665

FACILITY NUMBER

1146

FACILITY NAME

16-Foot Transonic Tunnel

FUNCTIONAL NAME

Wind Tunnel, Transonic, 16-Ft

TECHNOLOGICAL AREAS

Force, moment, pressure, and propulsion studies

1961

INITIAL COST

\$ 1,422 K

YR. BUILT

1941 STATUS CODE

Active

ACCUM. COST

\$ 14,357 K

NASA B.O.D.

OWNER CODE

NASA

LIFE EXPECT.

Indef.

OPER. CODE

NASA

CONTRACTOR NAME (if contr. oper.)

POTENTIAL

PLANS

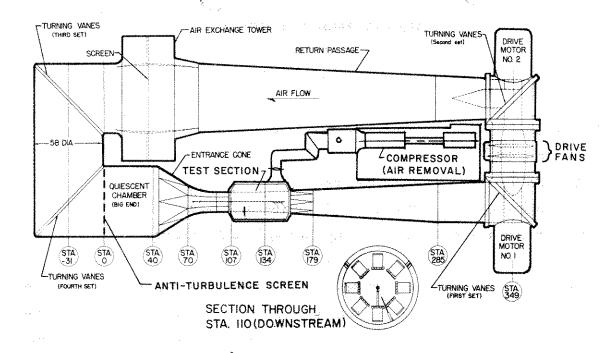
OTHER INFO SOURCES

Air-Flow and Power Characteristics of the Langley 16-Foot Tran-

sonic Tunnel with Slotted Test Section, NACA RM L52E01, July, 1952

COGNIZANT ORG.

High-Speed Aircraft Division


LOCAL CONTACT FOR

FURTHER INFO

Chief, Research Facilities Engineering Division, Code 56.000; (804)

827-3171

January 1974

DESCRIPTION

This facility is a closed-circuit, single-return, continuous-flow atmospheric tunnel. The test medium is air. Speeds up to Mach 1.05 are obtained with the tunnel main drive fans; speeds above Mach 1.05 are obtained with a combination of the main drive fans and test-section plenum suction. The slotted octagonal test section nominally measures 15.5 ft across the flats. The test section length is 22 ft for speeds up to Mach 1.0 and 8 ft for speeds above Mach 1.0. The tunnel is equipped with an air exchanger with adjustable intake and exit vanes to provide some temperature control.

Model mounting consists of sting, sting-strut, and fixed-strut arrangements. Propulsion simulation studies can be made for hot jet exhausts utilizing decomposition of hydrogen peroxide or dry, cold, high-pressure air (15 lb/sec at 1000 psi). A shadowgraph system is available for flow visualization. Data are recorded with 99 channels on a Beckman 210 and reduced off-site with a CDC 6600 computer system.

CHARACTERISTICS

Stagnation Pressure: Atmospheric Stagnation Temperature, °R: 510 to 650 Reynolds Number, per ft: 1.2 x 106 to 4.2 x 106

Mach Number: 0.2 to 1.3

Dynamic Pressure, lb/ft2: 58 to 905